Phase II (2019-'21) |
---|
II P1: FIRE Induced Element Cycling II P2: Nutrient cycling & vegetation II P3: Microorganisms & soil structure II P4: Linking bioturbation with fluxes II P5: Erosion-Climate-Vegetation coupling (SECCO) II P6: Bio-Geomorphology II P7: Biota, fracture, thresholds II P8: Stress constrained landscape modeling II P9: Bridging timescales with modeling II P10: Landscape evolution from Thermochronology II P11: DeepES - Weathering Geochemistry II P12: DeepES - Microbial element cycling II P13: DeepES - Geophysical Imaging II P14: DeepES - Microbial activity II P15: DeepES - Geomicrobiology II A1: Plant available water storage II A2: Bioweath |
Phase I (2016-'18) |
---|
I P1: Plant Traits and Decomposition I P2: Coupled Modelling I P3: Biofilms & Weathering I P4: Sediment storage & Connectivity I P5: Crustweathering I P6: Root Carbon I P7: Paleoclimate I P8: Imaging of Weathering front I P9: Sediment Transport I P10: Phosphorus solubilization I P11: Green & Grey world I P12: Biogenic Weathering I P13: Microbiological Stabilization I A3: Carbon & Nutrient Fluxes |
Investigator Names and Contact Info:
Chilean Collaborators Involved:
Postdoc:
supervisor: Dr. habil. M. Spohn
MSc:
supervisor: Dr. habil. M. Spohn
Project summary:
It is not known in detail how microbial activity in soils affects soil formation in different soil depths and under different climatic conditions. The overarching aim of the project proposed here is therefore to study how microbial cycling of C, N, P and Si affects soil formation. For this purpose, we will, first, study microbial biomass, microbial respiration, and the age of total organic C and respired C in soil and saprolite along a climate gradient in the Costal Cordillera of Chile. Second, we aim at quantifying non-symbiotic N2 fixation along the climate gradient, and at understanding the factors that limit N2 fixation, microbial respiration and silicate weathering. We will test the hypotheses (i) that microbial respiration in the saprolite that advances weathering is fueled by young organic matter, (ii) that CO2 concentrations in saprolite are positively correlated with the net primary production, and that (iii) N2 fixation is strongly limited by water availability along the climate gradient in the Costal Cordillera of Chile. In order to test these hypotheses, we will quantify microbial biomass in 10 m deep saprolite cores taken from four study sites along the climate gradient, and we will quantify the age of total organic C and respired C based on radiocarbon dating. Furthermore, we will quantify N2 fixation in incubations with 15N-N2. Finally, we will synthesize and model the results on biogenic weathering and microbial C, N, P, and Si cycling along the climate gradient in the Costal Cordillera that have been collected during the first and second phase of the priority program. The main value of the project will be that it relates microbial cycling of C, N, P and Si to the formation of soils.